National Guideline for Management of Dyslipidaemia for Secondary and Tertiary Healthcare Level

Directorate of Non-Communicable Diseases
Ministry of Health
National Dyslipidaemia management guideline
For Secondary and Tertiary Healthcare Level

Published by the Directorate for Non-Communicable Diseases with the technical support by the Ceylon College of Physicians and financial support by the World Health Organization (WHO) to serve as a reference to the doctors managing this common condition at secondary and tertiary healthcare level. This document was reviewed by the Directorate of NCD to be in line with the National policies, strategies and regulations. Feedback of relevant professional colleges and institution was also incorporated into this guideline.

Contributors

Dr Priyamali Jayasekara
Specialist Physician and Senior Lecturer in Internal medicine

Prof Chamila Mettananda
Professor in Pharmacology and Specialist Physician in Internal Medicine

Dr Sachith Abhayaratna
Specialist Physician in Endocrinology and Senior Lecturer in Pharmacology

Dr Thushara Matthias
Specialist Physician and Senior Lecturer in Internal Medicine

Dr J B Jayawardhana
Specialist Physician in Cardiology

Dr Renuka Jayathissa
Consultant Medical Nutritionist, Head of Nutrition Department MRI

Dr K V C Janaka
Specialist Physician in Internal Medicine

Dr Shamitha Dassanayake
Specialist Physician in Internal Medicine

Dr Shehan Silva
Specialist Physician and Senior Lecturer in Internal Medicine

Reviewers

Prof Senaka Rajapakshe
Senior Professor in Medicine, Specialist Physician in Internal Medicine

Dr Naomali Amarasena
Specialist Physician in Cardiology

Dr S.C Wickramasinghe
Specialist in Community Medicine, DDG NCD

Dr Vindya Kumarapeli
Specialist in Community Medicine, Director NCD

Dr. Arundika Senaratne
Specialist in Community Medicine

Editorial Assistance

Dr Tasneem Naina Marikkar
Medical Officer NCD

Dr Uthpala Muhandiram
Medical Officer NCD
Table of Contents

List of Tables .. 6
List of Figures ... 6
List of annexures .. 6
Abbreviations .. 7
Introduction .. 9
 Methodology and evidence review ... 9
 Scope of the guidelines .. 9
 Classes of recommendation .. 10
Classes of recommendation .. 10
 Levels of evidence .. 11
Levels of evidence ... 11
Chapter 1 ... 12
LIPIDS AND LIPOPROTEIN .. 12
 1.1 Biological role of lipids and lipoproteins 12
 1.2 Lipid measurements .. 15
Chapter 2 ... 16
CARDIOVASCULAR RISK ASSESSMENT ... 16
 2.1 Cardiovascular risk .. 16
 2.2 Total Cardiovascular Risk ... 16
 2.3 Rationale for Estimating Total Cardiovascular Risk 16
 2.4 Assessing CV Risk .. 16
 2.5 How to use the risk estimation charts 17
Chapter 3 ... 18
TREATMENT TARGETS AND GOALS .. 18
 3.1 Primary prevention goals .. 18
 3.2 Secondary prevention goals ... 18
Chapter 4 ... 20
LIFESTYLE MODIFICATIONS TO IMPROVE THE PLASMA LIPID PROFILE
 4.1 Body weight and physical activity ... 20
 4.1.1 Body weight .. 20
 4.1.2 Physical activity .. 20
 4.1.3 Dietary fat .. 21
4.1.5 General and special dietary advice ... 21
4.1.7 Smoking ... 22
4.2 Dietary supplements and functional foods for the treatment of dyslipidaemias ... 24

Chapter 5 .. 25
PHARMACOLOGICAL MANAGEMENT OF DYSLIPIDAEMIA ... 25
 5.1 Management algorithm .. 25
 5.2 Statin therapy .. 26
 5.2.1 Before starting statin treatment ... 26
 5.2.3 Adverse effects of statin therapy .. 27
 5.3 Prescription of statins .. 28
 5.3.1 Primary Prevention ... 28
 5.3.2 Secondary prevention .. 29
 5.4 Statin intolerance ... 31
 5.5 Follow-up and monitoring (Zomer et al., 2016) .. 31
 5.6 Intolerance or insufficient response to lipid-lowering therapy 31

Chapter 6 .. 32
MANAGEMENT OF DYSLIPIDAEMIAS IN DIFFERENT CLINICAL SETTINGS 32
 6.1 Familial dyslipidaemias ... 32
 6.2 Diabetes and metabolic syndrome ... 35
 6.3 Hypothyroidism ... 36
 6.4 TIA and strokes ... 36
 6.5 Heart failure and valvular heart disease ... 37
 6.6 Chronic kidney diseases (CKD) ... 37
 6.7 Pregnancy and lactation or planning pregnancy .. 38

Chapter 7 .. 38
SCREENING AND REFERRAL PATHWAYS FOR MANAGING HYPERLIPIDEMIA 38
 7.1 National NCD screening programme ... 38
 7.2 Investigations for dyslipidaemia at primary care level 39

GAPS IN EVIDENCE .. 42
REFERENCES .. 43
List of Tables

- Classes of recommendation .. 10
- Levels of evidence ... 11
- Table 1.1 Types of lipoproteins .. 14
- Table 1.2 Recommendations for lipid measurement ... 15
- Table 3.1 Primary prevention goals ... 18
- Table 3.2 Secondary prevention goals .. 18
- Table 3.3 Recommendations for Treatment Targets and Goals ... 19
- Table 4.1 Recommendations for lifestyle modifications .. 22
- Table 4.2 Effects of lifestyle changes on total cholesterol and LDL cholesterol 23
- Table 5.1 Recommendations for pharmacological management of dyslipidaemia 25
- Table 5.2 Recommendations for pharmacological management of hypertriglyceridemia 25
- Table 5.3 Grouping of statins ... 27
- Table 5.4 Drugs potentially interacting with statins metabolized by cytochrome P450 leading to drug interactions (Holoshitz et al., 2008) .. 28
- Table 6.1 Genetic disorders of lipoprotein metabolism (from ESC/EAS guidelines for the management of dyslipidaemia 2019) .. 30
- Table 6.2 Dutch Lipid Network Criteria for FH (from ESC/EAS guidelines for the management of dyslipidaemia 2019) .. 34
- Table 6.3 Recommendations for familial dyslipidaemia ... 35
- Table 6.4 Recommendations for dyslipidaemia in diabetes and metabolic syndrome 35
- Table 6.5 Recommendations for dyslipidaemia in hypothyroidism ... 36
- Table 6.6 Recommendations for dyslipidaemia in TIA and stroke .. 37
- Table 6.7 Recommendations for dyslipidaemia in heart failure and valvular heart disease 37
- Table 6.8 Recommendations for dyslipidaemia in CKD ... 37

List of Figures

- Figure 1.1 Lipoprotein Structures ... 12
- Figure 5.1 Algorithm of management of dyslipidaemia .. 30
- Figure 7.1 Referral pathways for screening, diagnosis and management of NCDs Outline of standards Screening Programme .. 42

List of annexures

- Annexure I WHO/ISH (SEAR B) risk charts
- Annexure II Physical activity
- Annexure III Dietary recommendations to lower low density lipoprotein cholesterol
- Annexure IV Cardio protective diet for high risk or with ASCVD
- Annexure V Recommendations for dietary supplements and functional foods
- Annexure VI General advice
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>ACS</td>
<td>Acute Coronary Syndrome</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine transaminase</td>
</tr>
<tr>
<td>Apo</td>
<td>Apo lipoprotein</td>
</tr>
<tr>
<td>APOB</td>
<td>Apo lipoprotein B 100 molecule</td>
</tr>
<tr>
<td>ASCVD</td>
<td>Atherosclerotic cardiovascular disease</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>CA</td>
<td>Coronary angiogram</td>
</tr>
<tr>
<td>CCP</td>
<td>Ceylon College of Physicians</td>
</tr>
<tr>
<td>CT CA</td>
<td>CT Coronary angiogram</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary artery bypass graft</td>
</tr>
<tr>
<td>CAC</td>
<td>Coronary artery calcium score</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td>CK</td>
<td>Creatinine kinase</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic kidney disease</td>
</tr>
<tr>
<td>CRP</td>
<td>C reactive protein</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>CVA</td>
<td>Cerebrovascular accident</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>CYP3AS</td>
<td>Cytochrome P450, family 3, subfamily A human gene locus</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DVD</td>
<td>Double vessel disease</td>
</tr>
<tr>
<td>ESC</td>
<td>European Society of Cardiology</td>
</tr>
<tr>
<td>EAS</td>
<td>European Atherosclerosis Society</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>eGFR</td>
<td>Estimated glomerular filtration rate</td>
</tr>
<tr>
<td>FBS</td>
<td>Fasting blood sugar</td>
</tr>
<tr>
<td>FH</td>
<td>Familial hypercholesterolemia</td>
</tr>
<tr>
<td>FCH</td>
<td>Familial combined hyperlipidemia</td>
</tr>
<tr>
<td>GI</td>
<td>Gastro Intestinal</td>
</tr>
<tr>
<td>HbA1C</td>
<td>Hemoglobin A 1 C</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>HDL-C</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HeFH</td>
<td>Heterozygous familial hypercholesterolemia</td>
</tr>
<tr>
<td>HoFH</td>
<td>Homozygous Familial Hypercholesterolemia</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency virus</td>
</tr>
</tbody>
</table>
HMGCR – 3 Hydroxy-3-methylglutaryl-Co A reductase

HMG- Co A Hydroxymethylglutaryl-coenzyme A
IDL Intermediate density lipoprotein
IHD Ischaemic Heart Disease
LCAT Lecithin cholesterol acyltransferase
LDL Low density lipoprotein
LDL- C Low density lipoprotein cholesterol
LDLR Low density lipoprotein receptor
Lp (a) Lipoprotein (a)
LPL Lipoprotein lipase
LVH Left ventricular hypertrophy
mAbs Monoclonal antibodies
MET Metabolic equivalent
MI Myocardial infarction
MOA Mode of action
NAFLD Non-alcoholic fatty liver disease
NICE National Institute for Health and Care Excellence
OATP1B1 Solute carrier organic action transporter family member 1B1
PCI – Percutaneous coronary intervention
PCSK9 Proprotein convertase subtilizing/ kexin type
PPAR-a Peroxisome proliferator – activated receptor a
PVD Peripheral vascular disease
SAMS Statin
Introduction

This national guideline summarizes and evaluates available evidence with the aim of assisting health professionals in implementing the best management strategies for an individual patient with Dyslipidaemia. Guidelines and its recommendations would facilitate the decision making of health professionals in their day-to-day practice. However, the final decision concerning an individual patient must be made by the responsible health professional(s) in consultation with the patient and caregiver as appropriate.

A number of guidelines have been issued in recent years by the European Society of Cardiology 2019 (ESC), European Atherosclerosis Society (EAS), American college of cardiology/American heart association; Task force on clinical practice guidelines 2018(ACC/AHA), Canadian Cardiovascular society 2016 (CCS), NICE guidelines UK 2020 and Lipid Association of India. We have limited local evidence on Dyslipidaemia and its management strategies. The level of evidence and the strength of the recommendation of particular management options were weighed and graded according to the tables 1 and 2.

Dyslipidaemia is an important risk factor for atherosclerotic cardiovascular diseases. Every 38 mg/dL (1.0 mmol/L) reduction in LDL-C reduces all-cause mortality by 10% (Baigent et al., 2009). Statin trial data suggest that the absolute benefits of treatment are related to an individual’s risk of atherosclerotic cardiovascular disease (ASCVD) and the absolute reduction in LDL-C that is achieved(Collins et al., 2016).

Sri Lanka is a South Asian country. South Asians have the highest rates of coronary artery disease (Cho et al., Nair and Prabhakaran, 2012). The commonest cause of hospital deaths in Sri Lanka in 2017 was ischemic heart disease (IHD)(Medical Statistics Unit Ministry of Health, 2017). Data on Dyslipidaemia in Sri Lanka is limited. There are very few nationally representative studies carried out on Dyslipidaemia. According to the Non-Communicable Disease Risk Factor Survey Sri Lanka 2015, nearly one fourth of adults (23.7%) were estimated to either have raised total cholesterol (≥ 190mg/dl) or were currently on medication for raised cholesterol(Ministry of Health, 2015). Nearly one third of females (28.4%) and one fifth of males (19.1%) were estimated to be in this category.

Methodology and evidence review

Recommendations in this section are adoptions from the latest guideline of Dyslipidaemia management for ACC/AHA guideline; American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines 2018, ESC 2019 and NICE 2020, considering the resources available in the Sri Lankan setting.

Scope of the guidelines

The purpose of this guideline is to address the practical management of Sri Lankan patients with high blood cholesterol and related disorders at secondary and tertiary care setting. Health professionals are encouraged to adhere to this National Guidelines when planning preventive, diagnostic and
therapeutic approaches at secondary and tertiary care institutions. However, this National Guidelines does not override the individual responsibility of health professionals in appropriate and accurate decision making in management of individual patients with dyslipidaemia.

Classes of recommendation

The classes of recommendation indicate the strength of recommendation, encompassing the estimated magnitude and certainty of benefit in proportion to risk.

Classes of recommendation

<table>
<thead>
<tr>
<th>Classes of recommendations</th>
<th>Definition</th>
<th>Wording to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective.</td>
<td>Is recommended or is indicated</td>
</tr>
<tr>
<td>Class II</td>
<td>Conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of the given treatment or procedure.</td>
<td></td>
</tr>
<tr>
<td>Class II a</td>
<td>Weight of evidence/opinion is in favour of usefulness/efficacy.</td>
<td>Should be considered</td>
</tr>
<tr>
<td>Class II b</td>
<td>Usefulness/efficacy is less well established by evidence/opinion.</td>
<td>Maybe considered</td>
</tr>
<tr>
<td>Class III</td>
<td>Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.</td>
<td>Is not recommended</td>
</tr>
</tbody>
</table>
Levels of evidence

The level of evidence rates the quality of scientific evidence supporting the intervention on the basis of the type, quantity, and consistency of data from clinical trials and other sources.

<table>
<thead>
<tr>
<th>Level of evidence A</th>
<th>Data derived from multiple randomized clinical trials or meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of evidence B</td>
<td>Data derived from a single randomized clinical trial or large non-randomized studies.</td>
</tr>
<tr>
<td>Level of evidence C</td>
<td>Consensus of opinion of the experts and/or small studies, retrospective studies, registries.</td>
</tr>
</tbody>
</table>
Chapter 1

LIPIDS AND LIPOPROTEIN

1.1 Biological role of lipids and lipoproteins

Triglyceride (TG) and cholesterol are the two major forms of circulating lipids in the human body but are insoluble in plasma. A lipoprotein is composed of cholesterol, triglycerides, and a single Apo lipoprotein (Figure 1.1) (Chiang, 2014).

Lipoproteins have been classified into six major classes (Table 1.1) (Feingold, 2000). When secreted into plasma by the liver, they are referred to as a very low-density lipoprotein (VLDL). The triglycerides are rapidly removed by the enzyme lipoprotein lipase and used for energy consumption and storage leaving a VLDL remnant particle. After most of the triglycerides have been removed, the lipoprotein becomes dense and is referred to as a low-density lipoprotein (LDL).

![Lipoprotein Structures](image)

Figure 1.1 Lipoprotein Structures

The major lipoproteins on Chylomicrons are ApoB48, ApoA1, ApoE, and ApoCII, and carries mostly TG. VLDL contains ApoB100, ApoCII, and ApoE, and carries mostly TG. IDL is derived from VLDL.
and contains ApoB100 and ApoE, and carries CE and TG. (Figure from Pathobiology of Human Disease, pp 1770–1782 (Elsevier, San Diego 2014)

Trapping of apoB100 containing small diameter lipoproteins (VLDL, IDL, LDL) and Lipoprotein(a) in the arterial wall and subsequent release of its cholesterol content to macrophages provokes a complex process that leads to initiation and progression of an atherosclerotic plaque (Borén and Williams, 2016).

Over time, the atherosclerotic plaque slowly enlarges as more apoB-containing dense lipoprotein particles become trapped in the artery wall. The increase of the atherosclerotic plaque burden as well as the changes occurring in the plaque composition eventually will lead to disruption of a plaque, formation of an overlying thrombus that acutely obstructs blood flow resulting in unstable angina, myocardial infarction or death.

Each apoB-containing lipoprotein has a single apoB molecule. Therefore, plasma apoB concentration is a direct measure of the total number of circulating atherogenic apoB particles that can become trapped in the artery wall (Brunzell et al., 2008).

However, the standard lipid panel does not typically measure apoB levels due to limited availability, high cost and difficulties in measurements. Non-HDL-C levels and apoB levels are highly correlated but and non-HDL-C could be used as a surrogate marker for apo B level (Hermans et al., 2011).
<table>
<thead>
<tr>
<th>Lipoprotein</th>
<th>Major Lipid Composition</th>
<th>Major Apolipoproteins</th>
<th>Role in Normal Fasting Plasma</th>
<th>Measured Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-density lipoprotein cholesterol (HDL-C)</td>
<td>Cholesterol</td>
<td>ApoA-I</td>
<td>Antiatherogenic (involved in reverse cholesterol transport from the tissues to the liver)</td>
<td>HDL-C</td>
</tr>
<tr>
<td>Low-density lipoprotein cholesterol (LDL-C)</td>
<td>Cholesterol</td>
<td>ApoB-100</td>
<td>Major cholesterol carrier</td>
<td>Mostly calculated using the Friedewald equation [LDL-C = Total cholesterol (Lloyd-Jones et al.) - HDL-C - TG/5 in mg/dL] Can also be measured directly (direct LDL-C) in limited situations</td>
</tr>
<tr>
<td>Intermediate-density lipoprotein cholesterol (IDL-C)</td>
<td>TG and cholesterol</td>
<td>ApoB-100</td>
<td>Intermediate between very low-density lipoprotein (VLDL) and LDL</td>
<td>Not routinely measured</td>
</tr>
<tr>
<td>VLDL</td>
<td>TG</td>
<td>ApoB-100</td>
<td>Major TG carrier</td>
<td>TG/5 is the estimate of the VLDL-C.</td>
</tr>
<tr>
<td>Chylomicron</td>
<td>TG</td>
<td>ApoB-48</td>
<td>Absent</td>
<td>Not routinely measured</td>
</tr>
<tr>
<td>Lipoprotein (a)</td>
<td>Cholesterol</td>
<td>Apo (a)</td>
<td></td>
<td>Not routinely measured</td>
</tr>
</tbody>
</table>

(From Introduction to Lipids and Lipoproteins, Endotext 2000)
1.2 Lipid measurements

A standard serum lipid profile measures the concentration of TC and HDL-C, as well as TG. With these values, the LDL-C concentration is most often calculated using the Friedewald formula:(refer table 3). If the TG value is more than 400 mg/dL (especially in non-fasting samples) this formula cannot be used to calculate LDL level. Although direct measurement of LDL-C is possible, cost, limited availability, systematic bias and inaccuracies in assays limits its use. Fasting serum sample is preferred when assessing the lipid profile due to the lower triglyceride levels in the fasting state which gives more accurate LDL-C estimations though the changes in triglycerides levels in fasting and non-fasting states have shown to be small (Sathiyakumar et al., 2018). If a non-fasting sample is taken, TG and LDL-C levels should be interpreted with caution especially in patients with diabetes, metabolic syndrome and hypertriglyceridemia (CB, 2019).

Table 1. 2 Recommendations for lipid measurement

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fasting serum sample is preferred over non-fasting sample for lipid profile testing at the first contact to ensure more precise lipid assessment</td>
<td>IIb</td>
</tr>
<tr>
<td>2 LDL-C analysis is recommended as the primary lipid analysis method for screening, diagnosis, and management.</td>
<td>I</td>
</tr>
<tr>
<td>3 LDL-C may be estimated using the Friedewald equation, and becomes increasingly inaccurate and invalid when TG levels are greater than 200mg/dL and 400 mg/dL, respectively (in a non-fasting sample)</td>
<td>IIb</td>
</tr>
<tr>
<td>4 The non-HDL-C (total cholesterol – HDLC) should be calculated to assist risk stratification in individuals with moderately elevated TG (200 to 500 mg/dL), diabetes, and/or established ASCVD</td>
<td>I</td>
</tr>
<tr>
<td>5 It is recommended that ApoB analysis for further risk assessment, particularly in people with high TG levels, DM, obesity, metabolic syndrome, or very low LDL-C levels.</td>
<td>I</td>
</tr>
</tbody>
</table>
Chapter 2

CARDIOVASCULAR RISK ASSESSMENT

2.1 Cardiovascular risk

Cardiovascular risk means the likelihood of a person developing an atherosclerotic cardiovascular event over a defined period of time. People of all ages should adopt a healthy lifestyle throughout the life (Cooney et al., 2009). Patients with established ASCVD and who are at risk of developing ASCVD should improve their lifestyle and reduce risk factor levels.

2.2 Total Cardiovascular Risk

Indicates the combined effect of a number of risk factors on this risk estimate. This guideline covers lipid-related contribution to total CV risk and clinical management at secondary and tertiary care level.

2.3 Rationale for Estimating Total Cardiovascular Risk

All current guidelines on the prevention of ASCVD in clinical practice recommend estimation of total CV risk. Prevention of ASCVD in a given person relates to total CV risk: the higher the risk, the more intense treatment is needed (Ference et al., 2017). This guideline uses World Health organization/International Society of Hypertension (WHO/ISH) risk prediction chart for South East Asia (Annexure 1) (WHO, 2019).

WHO/ISH risk prediction chart
- Indicates 10-year risk of a fatal or non-fatal major cardiovascular event (myocardial infarction or stroke).
- Assesses risk according to age, sex, blood pressure, smoking status and total cholesterol.
- It is useful for people who do not have established ASCVD.
- Identifies those at high ASCVD risk
- Helps to educate patients, to change high risk behaviour and to take antihypertensive drugs, lipid-lowering drugs and 75 mg Aspirin.

2.4 Assessing CV Risk

CV risk may be higher in:
- Already on antihypertensive therapy
- Premature menopause
- Obesity
- Sedentary lifestyle
- Family history of premature ASCVD in 1st degree relative (male < 55 years, female < 60 years)
- High TG level >180 mg/dl, CRP, fibrinogen, homocysteine, apo B, low HDL < 40mg/dl
- Psychosocial stress (Foster et al., 2018)
- Chronic inflammatory disease (e.g.; rheumatoid arthritis, asthma, ulcerative colitis)
- Major psychiatric disorders
- Atrial fibrillation
- Treatment for HIV
- Left ventricular hypertrophy
- Albuminuria
- Obstructive sleep apnoea syndrome.
- NAFLD

Risk estimation not indicated in:
- Documented ASCVD
- Blood cholesterol ≥ 309 mg/dL (8 mmol/l)
- DM with renal disease
- CKD (stage 3 and above)
- Heterozygous Familial Hypercholesterolemia (HeFH)
- High Lipoprotein (Lp) (a)
- CAC > 100 HU (Kavousi et al., 2012, Vlachopoulos et al., 2015, Yeboah et al., 2012, Mortensen et al., 2018, Hong et al., 2017, Cho et al., 2018)

2.5 How to use the risk estimation charts

- To estimate a person’s 10-year risk of ASCVD death
 - Find the table for gender, smoking status, and age (Annexure 1).
 - Within the table, find the cell nearest to the person’s BP and TC.
- Risk estimates will need to be adjusted upwards as the person approaches the next age category.
- Risk is initially assessed on the level of TC and systolic BP before treatment, if known.
- The longer and effective the treatment, greater the risk reduction, but in general it will not be more than about one-third of the baseline risk
- Low-risk persons should be offered advice to maintain their low-risk status.
- No threshold is universally applicable, the intensity of advice should increase with increasing risk.
- The charts may be used to give some indication of the effects of reducing risk factors, given that there is apparently a time lag before the risk reduces. Smoking cessation halve cumulative risk over a relatively short period of time.
Chapter 3

TREATMENT TARGETS AND GOALS

3.1 Primary prevention goals

Table 3. 1 Primary prevention goals

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>LDL Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk (WHO risk ≥ 20%)</td>
<td>LDL < 70 mg/dL (< 1.8 mmol/L)</td>
</tr>
<tr>
<td>Moderate risk (10% - < 20%)</td>
<td>LDL < 100 mg/dL (2.6 mmol/L)</td>
</tr>
<tr>
<td>Low risk (< 10%)</td>
<td>LDL < 116 mg/dL (3 mmol/L)</td>
</tr>
</tbody>
</table>

3.2 Secondary prevention goals

Table 3. 2 Secondary prevention goals

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>LDL Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established ASCVD</td>
<td>LDL < 55 mg/dL (< 1.4 mol/L)</td>
</tr>
<tr>
<td>ASCVD with second event within 2 years</td>
<td>LDL < 40 mg/dL (1 mol/L)</td>
</tr>
</tbody>
</table>

The adjustment of lipid-lowering therapy in accordance with these secondary goals may be considered in patients at very high ASCVD risk. The specific goal for non-HDL-C should be 30 mg/dL (0.8 mmol/L) higher than the corresponding LDL-C goal.

When secondary targets are used, the recommendations are:
Non- HDL-C Targets (in Very high risk, High risk and Moderate risk):
 o Very high risk < 85 mg/dL (< 2.2 mmol/L),
 o High risk < 100 mg/dL (< 2.6 mmol/L),
 o Moderate risk < 130 mg/dL (< 3.4 mmol/L)

ApoB targets if used in special situations are:
 o Very high risk < 65 mg/dL,
 o High risk < 80 mg/dL,
 o Moderate risk < 100 mg/dL
Table 3. 3 Recommendations for Treatment Targets and Goals

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In secondary prevention for patients at very-high risk an LDL-C reduction of >50% from baseline and an LDL-C goal of <55 mg/dL (<1.4 mmol/L) are recommended.</td>
<td>1</td>
</tr>
<tr>
<td>2. In primary prevention for individuals at very-high risk but without FH an LDL-C reduction of >50% from baseline and an LDL-C goal of <55 mg/dL (1.4 mmol/L) are recommended.</td>
<td>1</td>
</tr>
<tr>
<td>3. For patients with ASCVD who experience a second vascular event within 2 years (not necessarily of the same type as first event) while taking maximally tolerated statin-based therapy, an LDL-C goal of <40 mg/dL (1.0 mmol/L) may be considered</td>
<td>11b</td>
</tr>
<tr>
<td>4. In patients at high risk an LDL-C reduction of >50% from baseline and LDL-C goal of <70 mg/dL (1.8 mmol/L) are recommended</td>
<td>1</td>
</tr>
<tr>
<td>5. In individuals at moderate risk and LDL-C goal of <100 mg/dL (<2.6 mmol/L) should be considered</td>
<td>11b</td>
</tr>
<tr>
<td>6. In individual at low risk, an LDL-C goal ≤116 mg/dL (<3.0 mmol/L) may be considered</td>
<td>11b</td>
</tr>
</tbody>
</table>
Chapter 4

LIFESTYLE MODIFICATIONS TO IMPROVE THE PLASMA LIPID PROFILE

The pivotal role of lifestyle modifications in combating Dyslipidaemia and subsequent ASCVD has been proved by many landmark trials (Dalen and Devries, 2014, Mente et al., 2009, Chowdhury et al., 2014)

A more detailed explanation of lifestyle measures is provided in Tables 4.1.

4.1 Body weight and physical activity

4.1.1 Body weight

Weight reduction improves dyslipidaemia (Shaw et al., 2006, Kelley and Kelley, 2009). To reduce weight, caloric intake should be reduced, and energy expenditure increased. Weight loss should be done to achieve the ideal BMI of <23 kg/m². However, body weight reduction, even if modest (5-10% of basal body weight) has been shown to improve lipid abnormalities (Kelley and Kelley, 2009).

It can be achieved by decreasing the consumption of energy-dense foods, inducing a caloric deficit of 300–500 kcal/day.

The intervention should combine diet and exercise.

4.1.2 Physical activity

Physical inactivity should be avoided as far as possible. All adults should undertake regular physical activity as it helps in achieving a favourable lipid profile (Kamani et al., 2015, Wang and Xu, 2017, Kelley et al., 2005, Yu-Poth et al., 1999, Catapano et al., 2016, Mensink et al., 2003).

Adults should do 150 minutes to 300 minutes of moderate-intensity aerobic physical activity throughout the week or do 75 to 150 minutes of vigorous intensity aerobic physical activity throughout the week, or an equivalent combination of moderate and vigorous intensity activity for substantial health benefits. Adults may also do muscle-strengthening activities at moderate or greater intensity that involve all major muscle groups on 2 or more days a week, as these provide additional health benefits.

Adults may increase moderate-intensity aerobic physical activity to more than 300 minutes per week or engage in more than 150 minutes of vigorous-intensity aerobic physical activity per week, or an equivalent combination of moderate and vigorous intensity activity, for additional health benefits. Engaging in at least some physical activity is better than none. If adults are not currently meeting these physical activity recommendations, doing even a minimal level of physical activity will bring benefits to health. They should start with small amounts of physical activity and gradually increase duration, frequency and intensity over time (Annexure 2).
4.1.3 Dietary fat
Total fat intake is 30% or less of total energy intake. Avoiding any consumption of trans fat is a key measure of the dietary prevention of ASCVD.

Table 4.2 (Piepoli et al., 2016), annexures 3, 4 and 5 summarizes the currently available evidence on the influences of lifestyle changes and dietary supplements and functional foods on lipoproteins, indicating the magnitudes of the effects and the levels of evidence in relation to the impacts on the specific lipoprotein class.

4.1.4 Dietary carbohydrate and fibre
Total carbohydrate intake is 50-60% of total energy intake and not less than 40% of total energy intake. Dietary carbohydrate has a ‘neutral’ effect on LDL-C, although excessive consumption is represented by untoward effects on plasma TGs and HDL-C levels (Giner-Galvañ et al., 2016). Dietary fibre (particularly of the soluble type) which is present in legumes, fruits, vegetables, and wholegrain cereals (e.g., oats and barley) has a hypocholesterolaemia effect and represents a good dietary substitute for saturated fat to maximize the effects of the diet on LDL-C levels, and to minimise the untoward effects of a high-carbohydrate diet on other lipoproteins.

4.1.5 General and special dietary advice
Eat a variety of nutritious foods from all the food groups, in appropriate amounts to maintain optimal body weight and to get all the nutrients (Annexure 3 and 6). Cardioprotective diet (Hendrani et al., 2016, Lloyd-Jones et al., 2016, Downs and O’Malley, 2015, Jellinger et al., 2017, Rimm et al., 1999, Droste et al., 2013) for high risk or with ASCVD is given in Annexure 3 and 7.

“Heart Healthy diet” which will reduce LDL cholesterol and increase HDL cholesterol. Heart healthy diet for a sedentary individual with a normal body mass index (BMI 18.5 – 23 kgm²) to meet the nutrient requirements are given in Annexure 7.

4.1.6 Alcohol
Alcohol should be avoided in keeping with the recommendation of the Sri Lankan No alcohol policy.
4.1.7 Smoking

- Smoking cessation should be promoted (Ajay and Prabhakaran, 2010, Law and Rudnicka, 2006, Palmer et al., 2014). At the medical clinic patient should be encouraged to seek help using the Brief Intervention and the 5A strategy is one of the methods being used.
- The 5A’s strategy is suggested for achieving this goal in clinical practice:
 - Ask: systematically identify all tobacco users at every visit.
 - Advise: strongly urge all tobacco users to quit.
 - Assess: determine willingness to make a quitting attempt.
 - Assist: aid every willing patient in quitting by behavioural counselling and pharmacotherapy.
 - Arrange: schedule for follow ups. Initiate pharmacotherapy as needed.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Diet</td>
<td></td>
</tr>
<tr>
<td>Healthy diet low in saturated fat with a focus on wholegrain products, vegetables, fruit, and fish</td>
<td>-</td>
</tr>
<tr>
<td>2 Weight</td>
<td></td>
</tr>
<tr>
<td>Reduction improves dyslipidaemia. To reduce weight, caloric intake should be reduced, and energy expenditure increased.</td>
<td>1</td>
</tr>
<tr>
<td>3 Physical activity</td>
<td></td>
</tr>
<tr>
<td>Physical inactivity should be avoided as far as possible. All adults should undertake regular physical activity as it helps in achieving a favourable lipid profile.</td>
<td>1</td>
</tr>
<tr>
<td>Adults should do 150 minutes to 300 minutes of moderate-intensity aerobic physical activity throughout the week, or do 75 to 150 minutes of vigorous intensity aerobic physical activity throughout the week, or an equivalent combination of moderate and vigorous-intensity activity for substantial health benefits</td>
<td>1</td>
</tr>
<tr>
<td>Adults may also do muscle-strengthening activities at moderate or greater intensity that involve all major muscle groups on 2 or more days a week, as these provide additional health benefits.</td>
<td>1</td>
</tr>
<tr>
<td>4 Smoking cessation should be promoted.</td>
<td>1</td>
</tr>
<tr>
<td>5 Alcohol</td>
<td></td>
</tr>
<tr>
<td>Alcohol should be avoided in keeping with the recommendation of the Sri Lankan No alcohol policy.</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4.2 Effects of lifestyle changes on total cholesterol and LDL cholesterol

<table>
<thead>
<tr>
<th>Lifestyle interventions to reduce TC and LDL-C levels</th>
<th>Magnitude of the effect</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Reduce dietary trans fat</td>
<td>+++</td>
<td>A</td>
</tr>
<tr>
<td>Reduce dietary saturated fat</td>
<td>+++</td>
<td>A</td>
</tr>
<tr>
<td>Increase dietary fibre</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Use functional foods enriched with phytosterols</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Use red yeast rice supplements</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Reduce excessive body weight</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Reduce dietary cholesterol</td>
<td>+</td>
<td>B</td>
</tr>
<tr>
<td>Increase habitual physical activity</td>
<td>+</td>
<td>B</td>
</tr>
<tr>
<td>Use soy protein products</td>
<td>+/-</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lifestyle interventions to increase HDL-C levels</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce dietary trans fat</td>
<td>+++</td>
<td>A</td>
</tr>
<tr>
<td>Increase habitual physical activity</td>
<td>+++</td>
<td>A</td>
</tr>
<tr>
<td>Reduce excessive body weight</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Reduce dietary carbohydrates and replace them with unsaturated fat</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Quit Alcohol*</td>
<td>++</td>
<td>B</td>
</tr>
<tr>
<td>Quit smoking</td>
<td>+</td>
<td>B</td>
</tr>
<tr>
<td>Among carbohydrate-rich foods prefer those with low glycaemic index and high fibre content</td>
<td>+/-</td>
<td>C</td>
</tr>
<tr>
<td>Reduce intake of mono-and disaccharides</td>
<td>+/-</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lifestyle interventions to reduce TG-rich lipoprotein levels</th>
<th>Magnitude of the effect</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce excessive body weight</td>
<td>+++</td>
<td>A</td>
</tr>
<tr>
<td>Quit Alcohol*</td>
<td>+++</td>
<td>A</td>
</tr>
<tr>
<td>Increase habitual physical activity</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Reduce total amount of dietary carbohydrate</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Use supplements of n-3 polyunsaturated fat</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>Reduce intake of mono-and disaccharides</td>
<td>++</td>
<td>B</td>
</tr>
<tr>
<td>Replace saturated fat with mono-or polyunsaturated fat</td>
<td>+</td>
<td>B</td>
</tr>
</tbody>
</table>

*Alcohol policy was adjusted according to Sri Lankan No alcohol policy

Source: European Society of Cardiology (ESC)/ European Atherosclerosis Society (EAS) Guidelines for the management of dyslipidemia; Although red yeast rice is effective in lipid lowering, due to the variability in potency and possible adulteration of commercially available products, it is not recommended.
4.2 Dietary supplements and functional foods for the treatment of dyslipidaemias

Nutrition evaluation of functional food includes not only the search for clinical evidence of beneficial effects relevant to improved health or the reduction of disease risk, but also the demonstration of good tolerability (Annexure 5).
Chapter 5

PHARMACOLOGICAL MANAGEMENT OF DYSLIPIDAEMIA

5.1 Management algorithm

- Evaluate the total CV risk of the individual using WHO/ISH risk charts (Annexure 1)
- Exclude secondary causes
- Provide lifestyle advice for primary prevention
- Involve the patient in decisions on CV risk management.
- Choose a statin regimen.
- Where necessary, additional treatments that can meet treatment goals can be used.

*Different drugs used in treatment of dyslipidaemia are shown in annexure 8.

Table 5.1 Recommendations for pharmacological management of dyslipidaemia

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>It is recommended that a high-intensity statin is prescribed up to the highest tolerated dose to reach the goals set for the specific level of risk</td>
</tr>
<tr>
<td>2</td>
<td>If the goals are not achieved with the maximum tolerated dose of a statin, combination with ezetimibe is recommended</td>
</tr>
<tr>
<td>3</td>
<td>If the goals are not achieved with the maximum tolerated dose of a statin and ezetimibe, a combination with a PCSK9 inhibitor may be considered.</td>
</tr>
<tr>
<td>4</td>
<td>If a statin-based regimen is not tolerated at any dosage (even after rechallenging), ezetimibe should be considered</td>
</tr>
<tr>
<td>5</td>
<td>If the goal is not achieved, statin combination with a bile acid sequestrant may be considered</td>
</tr>
</tbody>
</table>

Table 5.2 Recommendations for pharmacological management of hypertriglyceridaemia

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Statin treatment is recommended as the first drug of choice to reduce CV risk in high-risk individuals with hypertriglyceridemia. (TG>200mg/dL (2.3 mmol/L)</td>
</tr>
<tr>
<td>2</td>
<td>In high-risk patients with TG levels between 135-499 mg/dL (1.5-5.6 mmol/L) despite statin treatment, n-3 fatty acid should be considered in combination with a statin.</td>
</tr>
<tr>
<td>3</td>
<td>In patients who are at LDL-C goal with TG levels >200 mg/dL (>2.3 mmol/L) fenofibrate or bezafibrate may be considered in combination with statins.</td>
</tr>
</tbody>
</table>
5.2 Statin therapy

The decision whether to start statin therapy should be made after an informed discussion between the clinician and the person about the risks and benefits of statin treatment, considering additional factors such as potential benefits from lifestyle modifications, informed patient preferences, comorbidities, polypharmacy, general frailty and life expectancy.

5.2.1 Before starting statin treatment

Perform baseline blood tests and clinical assessment, and treat comorbidities and secondary causes of dyslipidaemia including:

- Tobacco consumption (smoke or smokeless)
- Alcohol consumption
- Blood pressure
- BMI or other measures of obesity
- FBS or HbA1c
- Renal function and estimated glomerular filtration rate
- Alanine aminotransferase (Medical Statistics Unit Ministry of Health)
- Thyroid-stimulating hormone (TSH)

Ask for if they have symptoms related to muscles and if so, measure creatinine kinase (CPK) levels. If CPK levels are more than 5 times the upper limit of normal repeatedly, do not start statin treatment. If creatinine kinase levels are raised but less than 5 times the upper limit of normal, start statin treatment at a lower dose.

Measure baseline ALT before starting a statin. Do not routinely exclude from statin therapy if liver transaminase levels are raised but are less than 3 times the upper limit of normal.

5.2.2 Statin regimens for treatment of dyslipidaemia

- Current available evidence from meta-analyses suggests that the clinical benefit of statin treatment is largely a class effect, driven by the absolute LDL-C reduction; therefore, the type of statin used should reflect the treatment goals for a given patient.
- When a decision is made to prescribe a statin use a statin of high intensity (Table 5.3) and low cost (Collins et al., 2016)
- Statins are contraindicated in pregnancy. Therefore, advise:
 - to stop taking statin if pregnancy is a possibility
 - to stop taking statins 3 months before conception if planning pregnancy not to restart statins until breastfeeding is finished.
Table 5.3 Grouping of statins

<table>
<thead>
<tr>
<th>Dose (mg/day)</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simvastatin</td>
<td>–</td>
<td>27% A</td>
<td>32% B</td>
<td>37% B</td>
<td>42% CD</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>–</td>
<td>37% B</td>
<td>43% C</td>
<td>49% C</td>
<td>55% C</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>38% B</td>
<td>43% C</td>
<td>48% C</td>
<td>53% C</td>
<td>–</td>
</tr>
</tbody>
</table>

A – 20%-30% reduction (low intensity); B – 31%-40% reduction (medium intensity); C – reduction of more than 40% (high intensity); D – increased risk of myopathy

5.2.3 Adverse effects of statin therapy

Adverse effects on muscle –

Myopathy is the most clinically relevant adverse effect of statins. Risk of myopathy is more due to interaction with concomitant drugs (Appendix 8). Rhabdomyolysis is the most severe form of statin-induced muscle damage, characterized by severe muscular pain, muscle necrosis, and myoglobinuria potentially leading to renal failure and death. In rhabdomyolysis CPK levels are elevated by ≥ 10 times, the upper limit of normal (Stroes et al., 2015, Marcum et al., 2012, Golomb and Evans, 2008).

Adverse effects on the liver–

The common definition of clinically relevant ALT elevation is an increase of three times the upper limit of normal on two consecutive occasions. Mild elevation of ALT can occur in 0.5-2.0% of patients but has not been shown to be associated with true hepatotoxicity or changes in liver function. Progression to liver failure is exceedingly rare, therefore routine monitoring of ALT during statin treatment is no longer recommended (Collins et al., 2016, Dongiovanni et al., 2015, Chalasani et al., 2004, Vuppalanchi et al., 2005, Mach et al., 2018).

Increased risk of new-onset diabetes mellitus –

This is a consistent, dose-related effect. The number needed to cause one case of diabetes has been estimated as 255 over 4 years of statin treatment. The risk is higher with the more potent statins at high doses, and is also higher in the elderly, and in the presence of other risk factors for diabetes such as overweight or insulin resistance. However, absolute reduction in the risk of CVD in high-risk patient clearly outweighs the possible adverse effects (Baigent et al., 2009, Preiss et al., 2011, Waters et al., 2013, Sattar et al., 2010, McKinney and Kostis, 2012).
Increased risk of haemorrhagic stroke –

Total cholesterol is negatively associated with haemorrhagic stroke in observational studies, but this need to be further studied due to conflicting findings in different studies (Hackam et al., 2011, Davidson, 2004, Franssen et al., 2009)

Adverse effects on kidney function –

There is no clear evidence that statins have a clinically significant beneficial or adverse effect on renal function (Jellinger et al., 2017). An increased frequency of proteinuria has been reported for all statins, but in most cases, is not higher than for placebo (Ajay and Prabhakaran, 2010). This has been analysed in more detail for rosvastatin and with a dose of 80 mg, a frequency of 12% was reported but with the approved doses of <40 mg, the frequency is much lower and in line with the frequency for other statins. The proteinuria induced by statins is of tubular origin, usually transitory, and is believed to be due to reduced tubular reabsorption and not to glomerular dysfunction (Holoshitz et al., 2008)

Drug interactions –

Occurs due to CYP system involvement in metabolism. All currently available statins except, rosvastatin, and pitavastatin undergo major hepatic metabolism via the CYPs. Combination of statins with gemfibrozil enhances the risk of myopathy but there is very little increased risk for myopathy when combining statins with other fibrates, such as fenofibrate, bezafibrate, or ciprofibrate (Mach, 2019, Ueda, 2005). List of common drug interactions are given in Table 5.4.

Table 5.4 Drugs potentially interacting with statins metabolized by cytochrome P450 leading to drug interactions (Holoshitz et al., 2008)

<table>
<thead>
<tr>
<th>Anti-infective agents</th>
<th>Calcium antagonists</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itraconazole</td>
<td>Verapamil</td>
<td>Ciclosporin</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>Diltiazem</td>
<td>Danazol</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>Amlodipine</td>
<td>Amiodarone</td>
</tr>
<tr>
<td>Erythromycin</td>
<td></td>
<td>Ranolazine</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td></td>
<td>Grapefruit juice</td>
</tr>
<tr>
<td>Telithromycin</td>
<td></td>
<td>Nefazodone</td>
</tr>
<tr>
<td>HIV protease inhibitors</td>
<td></td>
<td>Gemfibrozil</td>
</tr>
</tbody>
</table>

5.3 Prescription of statins

5.3.1 Primary Prevention
Start atorvastatin 20 mg/ rosvastatin 10 mg (high intensity statins) to the following people (Figure 5.1)
- People with an estimated WHO/ISH CV risk ≥ 20%
- Adults with diabetes mellitus with an estimated WHO/ISH CV risk ≥ 20%
• Start either Atorvastatin 20 mg OD or Rosuvastatin 10 mg OD for patients with CKD stage 3 - 5
• Severe Hypercholesterolemia (LDL-C ≥190 mg/dL [≥4.9 mmol/L])
• It is reasonable to prescribe moderate intensity statins to diabetics
• Aged 40–75 years, without past history of ASCVD
• Who are younger than 40 years of age and/or have type 1 diabetes with other ASCVD risk factors
** For people 85 years or older, consider atorvastatin 20 mg as statins may be of benefit in reducing the risk of non-fatal myocardial infarction. Be aware of factors that may make treatment inappropriate

• Ezetimibe monotherapy is recommended as an option for treating primary dyslipidaemia in adults in whom initial statin therapy is contraindicated.

5.3.2 Secondary prevention
• Start atorvastatin 40mg/ rosuvastatin 20mg nocte in Sri Lankans with past history of ASCVD and without CKD. However, the recommendation is 80mg in Western guidelines (Zomer et al., 2016) (Figure 5.1)
• Start atorvastatin 20 mg or rosuvastatin 10mg nocte in patients with past history of ASCVD and CKD.
 o Increase the dose if a greater than 40% reduction in non-HDL cholesterol is not achieved and estimated glomerular filtration rate(eGFR) is 30 ml/min/1.73m² or more.
 o Discuss the use of higher doses of statins with a renal specialist if eGFR is less than 30ml/min/1.73m²
 o Recommendation on lipid lowering therapy in patients on renal replacement therapy is outside the scope of this guideline.
• Ezetimibe monotherapy is recommended if initial statin therapy is contraindicated.
Figure 5.1 Algorithm of management of dyslipidaemia (WHO risk levels will be changed accordingly Low risk <10%, Moderate risk 10 - <20%, High risk ≥20%)
5.4 Statin intolerance

If a person is not able to tolerate a high-intensity statin, aim to treat with the maximum tolerated dose as statins at any dose reduce cardiovascular disease risk. Discuss the following possible strategies with them:

- Stopping the statin and trying again when the symptoms have resolved
- Reducing the dose within the same intensity group
- Changing the statin to a lower intensity group

5.5 Follow-up and monitoring (Zomer et al., 2016)

- Do not routinely measure creatinine kinase levels in asymptomatic patients on statins.
- Measure liver transaminase enzymes at baseline, within 3 months of starting treatment and at 12 months, but not again unless clinically indicated.
- Do not stop statins if an increase in blood glucose level is noted while on treatment.
- Repeat lipid profile 3 months after initiation of statins or after dose adjustment.
- Arrange annual reviews for people taking statins long term:
 - To discuss medicines adherence, lifestyle modification and other ASCVD risk factors.
 - To assess control with a fasting/ non-fasting blood test for non-HDL cholesterol.
 - If a greater than 40% reduction in non-HDL cholesterol is not achieved.
 - Discuss adherence and timing of dose.
 - Optimise adherence to diet and lifestyle measures.
 - Consider increasing the dose if on atorvastatin less than 80 mg and the person is judged to be at higher risk.

5.6 Intolerance or insufficient response to lipid-lowering therapy

Can try the following options:
1. Ezetimibe monotherapy - in adults who cannot tolerate statin therapy
2. Ezetimibe co-administered with initial statin therapy, when:
 - Serum total or LDL cholesterol concentration is not appropriately controlled either after appropriate dose titration of initial statin therapy or
 - Because dose titration is limited by intolerance to the initial statin therapy or
 - A change from initial statin therapy to an alternative statin is being considered.
Chapter 6

MANAGEMENT OF DYSLIPIDAEMIAS IN DIFFERENT CLINICAL SETTINGS

6.1 Familial dyslipidaemias

Plasma lipid levels are determined by genetic factors to a large extend and in the extreme forms are presented as familial dyslipidaemias (FD). Indifferent types of FD it is common to find high LDL-C, high TG, or low HDL-C levels affecting several family members (Table 6.1) (Sibley and Stone, 2006).

Out of these genetic disorders of lipid metabolism, Familial hypercholesterolemia (FH) is the most common form and it is strongly related to ASCVD at a younger age. FH is an autosomal-dominant disorder associated with mutations in the LDL receptor gene resulting in markedly elevated plasma low-density lipoprotein cholesterol levels (Ward et al., 2007).

The diagnosis of both homozygous and heterozygous FH is based primarily on the finding of severe LDLc elevations in the absence of secondary causes of hypercholesterolemia. Xanthomas are noted commonly on the Achilles tendons and metacarpophalangeal extensor tendons of the hands of untreated patients. Several different criteria are available for the clinical diagnosis of FH and the commonly used Dutch Lipid Clinic Network criteria for diagnosis of FH is shown in (Table 6.2) (Sibley and Stone, 2006).

Diagnosis of FH can be verified by showing causative mutations in genetic testing. If left untreated the risk of ASCVD is greatly increased and early diagnosis and appropriate treatment can significantly reduce the risk for ASCAD in these patients (Cannon et al., 2006).
Table 6.1 Genetic disorders of lipoprotein metabolism (from ESC/EAS guidelines for the management of dyslipidaemia 2019)

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Prevalence</th>
<th>Gene(s)</th>
<th>Effect on Lipoproteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeFH</td>
<td>1 in 200—250</td>
<td>LDLR, APO B, PCSK 9</td>
<td>↑ LDL-C</td>
</tr>
<tr>
<td>HoFH</td>
<td>1 in 160 000—320 000</td>
<td>LDLR, APO B, PCSK 9</td>
<td>↑↑ LDL-C</td>
</tr>
<tr>
<td>FCH</td>
<td>1 in 100/200</td>
<td>USF1 + modifying genes</td>
<td>↑ LDL-C ♤ LDL-C ♣ ApoB</td>
</tr>
<tr>
<td>Familial dysbetalipoproteinaemia</td>
<td>1 in 5000</td>
<td>APO E</td>
<td>↑↑ IDL and chylomicron remnants (β VLDL)</td>
</tr>
<tr>
<td>Familial lipoprotein lipase deficiency (familial chylomicron syndrome)</td>
<td>2 in 10^6</td>
<td>LPL, APO C2, LMF1, ApoAV, GPIHBP1</td>
<td>↑↑ Chylomicrons and VLDL-C</td>
</tr>
<tr>
<td>Tangier disease (analphalipoproteinaemia)</td>
<td>1 in 10^6</td>
<td>ABCA1</td>
<td>↓↓ HDL-C</td>
</tr>
<tr>
<td>Familial LCAT deficiency</td>
<td>1 in 10^6</td>
<td>LCAT</td>
<td>↓ HDL-C</td>
</tr>
</tbody>
</table>

Apo = apolipoprotein; FCH = familial combined hyperlipidaemia; HDL-C = high-density lipoprotein cholesterol; HeFH = heterozygous familial hypercholesterolaemia; HoFH = homozygous familial hypercholesterolaemia; IDL = intermediate-density lipoprotein; LCAT = lecithin cholesterol acyltransferase; LDL-C = low-density lipoprotein cholesterol; VLDL = very low-density lipoprotein cholesterol.
Table 6. 2 Dutch Lipid Network Criteria for FH (from ESC/EAS guidelines for the management of dyslipidaemia 2019)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Family history</td>
<td></td>
</tr>
<tr>
<td>First-degree relative with known premature (men aged <55 years; women <60 years) coronary or vascular disease, or first-degree relative with known LDL-C above the 95th percentile</td>
<td>1</td>
</tr>
<tr>
<td>First-degree relative with tendinous xanthomata and/or corneal arcus, or children aged <18 years with LDL-C above the 95th percentile</td>
<td>2</td>
</tr>
<tr>
<td>2) Clinical history</td>
<td></td>
</tr>
<tr>
<td>Patient with premature (men aged <55 years; women <60 years) CAD</td>
<td>2</td>
</tr>
<tr>
<td>Patient with premature (men aged <55 years; women <60 years) cerebral or peripheral vascular disease</td>
<td>1</td>
</tr>
<tr>
<td>**3) Physical examination *</td>
<td></td>
</tr>
<tr>
<td>Tendinous xanthomata</td>
<td>6</td>
</tr>
<tr>
<td>Corneal Arcus before age 45 years</td>
<td>4</td>
</tr>
<tr>
<td>4) LDL-C levels (without treatment)</td>
<td></td>
</tr>
<tr>
<td>LDL-C >325 mg/dL (≥8.5 mmol/L)</td>
<td>8</td>
</tr>
<tr>
<td>LDL-C 251—325 mg/dL (6.5—8.4 mmol/L)</td>
<td>5</td>
</tr>
<tr>
<td>LDL-C 191—250 mg/dL (5.0—6.4 mmol/L)</td>
<td>3</td>
</tr>
<tr>
<td>LDL-C 155—190 mg/dL (4.0—4.9 mmol/L)</td>
<td>1</td>
</tr>
<tr>
<td>5) DNA analysis</td>
<td></td>
</tr>
<tr>
<td>Functional mutation in the LDLR, apoB, or PCSK9 genes</td>
<td>8</td>
</tr>
</tbody>
</table>

Choose only one score per group, the highest applicable; diagnosis is based on the total number of points obtained.

A ‘definite’ FH diagnosis requires >8 points
A ‘probable’ FH diagnosis requires 6—8 points
A ‘possible’ FH diagnosis requires 3—5 points

2 CAD = coronary artery disease; FH = familial hypercholesterolemia; LDL-C = low-density lipoprotein cholesterol; PCSK9 = proprotein convertase subtilisin/kexin type 9.
* Exclusive of each other (i.e., maximum 6 points if both are present).
Table 6.3 Recommendations for familial dyslipidaemia

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Diagnosis of FH should be considered in patients with CHD aged <55 years for men and <60 years for women, in people with relatives with premature fatal or non-fatal ASCVD, severely elevated LDL-C [in adults (>190 mg/dL), in children (>150 mg/dL)], and in first-degree relatives of FH patients.</td>
<td>I</td>
</tr>
<tr>
<td>2 FH should be diagnosed using clinical criteria and when possible confirmed with genetic tests.</td>
<td>I</td>
</tr>
<tr>
<td>3 Screening should be offered to the family members of a confirmed patient with FH.</td>
<td>I</td>
</tr>
<tr>
<td>4 FH patients with ASCVD or who have another major risk factor should be treated as other very-high-risk patients and FH patients with no prior ASCVD or other risk factors should be treated as high-risk patients.</td>
<td>I</td>
</tr>
<tr>
<td>5 FH patients in the very-high risk category should be treated with a single (statin) or combination lipid lowering therapy (statin plus ezetimibe) to achieve more than 50% reduction of LDL-C from baseline and an LDL-C goal of <55 mg/dL.</td>
<td>IIa</td>
</tr>
<tr>
<td>6 Treatment with a PCSK9 inhibitor is recommended in very-high-risk FH patients if the treatment goal is not achieved on maximal tolerated statin plus ezetimibe.</td>
<td>I</td>
</tr>
<tr>
<td>7 In children, testing for FH is recommended from the age of 5 years, or earlier if Homozygous FH is suspected.</td>
<td>I</td>
</tr>
</tbody>
</table>

6.2 Diabetes and metabolic syndrome

Hyperlipidaemia in association with insulin resistance is common in patients with type 2 diabetes mellitus. Hyperinsulinemia secondary to insulin resistance is associated with hypertriglyceridemia, increased small dense low-density lipoprotein (LDL), and low serum high-density lipoprotein (HDL) cholesterol concentrations. These atherogenic dyslipidaemia is one of the major risk factors for ASCVD in patients with type 2 diabetes. Lipid lowering therapy with statins have consistently demonstrated significant benefits on reducing ASCVD events in people with T2DM (Zomer et al., 2016, Sibley and Stone, 2006, Pearce, 2004, Amarenco et al., 2006)

Table 6.4 Recommendations for dyslipidaemia in diabetes and metabolic syndrome
Primary prevention

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lifestyle intervention (diet, weight loss, increased physical activity) is recommended in all patients with diabetes to improve lipid levels</td>
<td>A</td>
</tr>
<tr>
<td>2. Moderate-intensity statin therapy is recommended in patients with diabetes aged 40–75 years without ASCVD</td>
<td>A</td>
</tr>
<tr>
<td>3. It is reasonable to use high-intensity statin therapy in patients with diabetes at higher CV risk (WHO/ISH risk > 20%), especially those with multiple ASCVD risk factors or aged 50–70 years</td>
<td>B</td>
</tr>
<tr>
<td>4. It is reasonable to use moderate intensity statins in patients who are younger than 40 years of age and/or have type 1 diabetes with other ASCVD risk factors.</td>
<td>B</td>
</tr>
</tbody>
</table>

Secondary prevention

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. High-intensity statin therapy should be added to lifestyle therapy in patients with diabetes of all ages with atherosclerotic cardiovascular disease</td>
<td>A</td>
</tr>
<tr>
<td>6. Consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor) if LDL cholesterol is ≥70 mg/dL on maximally tolerated statin dose in patients with diabetes and ASCVD considered to be at very high risk.</td>
<td>A</td>
</tr>
<tr>
<td>7. It is reasonable to continue statin treatment in adults with diabetes aged >75 years who are already on statin therapy</td>
<td>B</td>
</tr>
<tr>
<td>6. Statin therapy is contraindicated in pregnancy.</td>
<td>B</td>
</tr>
</tbody>
</table>

6.3 Hypothyroidism

Many patients with hypothyroidism have high serum concentrations of total cholesterol and low-density lipoprotein (LDL) cholesterol and some patient may even have high triglyceride levels. The primary mechanism for hypercholesterolemia in hypothyroidism is accumulation of LDL cholesterol due to a reduction in the number of cell-surface receptors for LDL, resulting in decreased catabolism of LDL. Variable changes in plasma lipoprotein concentration has been observed in hypothyroid patients treated with levothyroxine (Kjekshus et al., 1997).

Table 6.5 Recommendations for dyslipidaemia in hypothyroidism

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All patients with Hyperlipidaemia should be screened for hypothyroidism before being given specific lipid-lowering drug therapy</td>
<td>I</td>
</tr>
<tr>
<td>2. If hypothyroidism is present, the patient should be first treated for three to four months with levothyroxine therapy and if the serum lipid levels are still abnormal, then lipid-lowering therapy may be indicated</td>
<td>IIa</td>
</tr>
</tbody>
</table>

6.4 TIA and strokes
Association between dyslipidaemia, ischemic stroke and transient ischemic attacks (TIA) is well known. Patients with ischemic stroke or TIA are at high risk of recurrent events as well as other cardiovascular events like myocardial infarctions. Secondary prevention with statins reduces the risk of recurrent stroke, myocardial infarctions, and vascular death (Milin et al., 2014).

Table 6. 6 Recommendations for dyslipidaemia in TIA and stroke

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Patients with ischemic strokes and TIA are at increased risk of recurrent events, ASCVD and intense lipid lowering therapy with statins is recommended (Pearce, 2004).</td>
<td>I</td>
</tr>
</tbody>
</table>

6.5 Heart failure and valvular heart disease

Cholesterol lowering therapy with statins have clearly shown to reduces the incidence of heart failure in patients with prior CAD (stable CAD or a history of ACS) (Franczyk-Skóra et al., 2013). There is no evidence that statins can prevent heart failure of non-ischemic origin. There is insufficient evidence to suggest that statins would slow the progression of aortic valve stenosis (Loncar et al., 2015).

Table 6. 7 Recommendations for dyslipidaemia in heart failure and valvular heart disease

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Routine administration of statins in patients with HF without other indications for their use (e.g., CAD) is not recommended.</td>
<td>III</td>
</tr>
<tr>
<td>2 Initiation of lipid-lowering treatment in patients with aortic valvar stenosis without CAD to slow progression of aortic valve stenosis in the absence of other indications for their use is not recommended (Loncar et al., 2015).</td>
<td>III</td>
</tr>
</tbody>
</table>

6.6 chronic kidney diseases (CKD)

Lipid abnormalities are common in patients with all stages of chronic kidney disease. Primary lipid abnormality seen in CKD patients is elevated TG levels. Low HDL-C levels and excess of small dense LDL particles are also seen in these patients. Patients with CKD have a much higher risk of ASCVD and CV mortality rate compared with patients with normal renal functions (Franczyk-Skóra et al., 2013, Loncar et al., 2015).

Table 6. 8 Recommendations for dyslipidaemia in CKD

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Patients with CKD stage 3-5 are considered to be at high or very-high risk of ASCVD (Franczyk-Skóra et al., 2013, Loncar et al., 2015).</td>
<td>I</td>
</tr>
</tbody>
</table>
Patients with CKD who have established ASCVD should receive maximally tolerated statin therapy, similar to patients with established ASCVD disease who do not have CKD.

The use of statins therapy may benefit patients with non-dialysis-dependent stage 3-5 CKD even in the absence of other ASCVD.

In patients with dialysis-dependent CKD who are free of ASCVD and who are not already on statin therapy, newly commencement of statin therapy is not recommended (Wanner et al., 2005).

Statins should be considered as first-line agents in renal transplant patients (Davidson, 2004).

6.7 Pregnancy and lactation or planning pregnancy

- Routine screening should not be done.
- If a female belongs to above category detected to have dyslipidaemia always needs to screen for secondary causes, e.g., hypothyroidism
- Routine treatment with statins should not be commenced unless risk over weigh the benefit. In these circumstances patient should be referred to a physician / endocrinologist / cardiologist for expert opinion to decide on statin therapy.
- Females with fertility wishes who are on statin therapy needs to carefully assess by a physician /endocrinologist / cardiologist for discontinuation of statins. In a situation where statin therapy is indicated, they should be offered temporary contraceptive methods after proper counselling.
- Females who are having a risk of dyslipidaemia must be referred for lifestyle modification.
- If diabetic individuals aged ≤30 years have no evidence of vascular damage and, in particular, microalbuminuria, it seems reasonable to delay statin therapy in asymptomatic patients until the age of 30. Below this age, statin therapy should be managed on a case-by-case basis, considering the presence of microalbuminuria, end organ damage, and ambient LDL-C levels.

Chapter 7

SCREENING AND REFERRAL PATHWAYS FOR MANAGING HYPERLIPIDEMIA

7.1 National NCD screening programme

The national NCD screening programme provides a comprehensive package for NCD screening through the Healthy Lifestyle Centres (HLC) established at the Primary Health Care (PHC) level hospitals. The package includes a comprehensive history and examination and measurements of
waist circumference, waist to height ratio, BMI, BP, FBS/RBS, Total Cholesterol and CV risk assessment for clients. Two categories of people have been identified as eligible to be screened by the national NCD screening programme as described below.

Category A: All apparently healthy persons aged 35 years and above.

Category B: Persons aged between 20-34 years having the following risk factors.

1. Smoking tobacco during the past one year
2. Overweight & obesity (BMI ≥ 25kg/m²)
3. Abdominal Obesity (waist circumference – male > 90cm, female >80cm)
4. Persistently Raised BP (≥140/90mmHg)
5. Symptoms suggestive of Diabetes Mellitus
6. History of premature cardiovascular disease in first degree relatives (male relative < 55 years, female relative <65 years)
7. History of Diabetes Mellitus in first degree relatives
8. History of Familial Dyslipidaemia in first degree relatives

*Those with established ASCVD, Renal dysfunction and Diabetic nephropathy are excluded from screening (refer section 2.4)

7.2 Investigations for dyslipidaemia at primary care level

1. At HLC – screening
 1. Total cholesterol levels
 - Can be performed on a random capillary blood sample using cholesterol strips.
 - Some centres collect blood samples and send to the closest hospital laboratory.

 If total cholesterol level is equal to 240 mg/dl (approx. 6 mmol/l) or more, a lipid profile needs to be carried out and clients should be referred to the medical clinic at primary care level.

2. Medical clinic (Primary Care)- diagnosis
 - Lipid Profile
 - Require 12-14 hours fasting and a venous blood sample

Refer Chapter 4 for details on lifestyle modification guidance for dyslipidaemia management.
Figure below illustrates the referral pathways for screening, diagnosis and management of NCDs including hyperlipidaemia across all levels of care.

Lifestyle modification guidance should be provided to all the patients diagnosed with hyperlipidemia at all levels of care.
Formulation of annual plan
1. Estimation of annual coverage of target population
2. Decide recruitment method
3. Supply and management of equipment, consumables and documents

Screening
People aged 35 years and above without any NCD past history
- Behavioral Risk Factors
- Body Mass Index (BMI)
- Waist: Height Ratio
- Blood pressure
- Visual Acuity
- Breast & Oral Examination
- Fasting/Random Blood glucose
- Total Cholesterol
- Serum Creatinine (if available)

CVD Risk Estimation
<5% 5% - 10% 10% - 20% 20% - 30% > 30%

Lifestyle Modification
Participants are expected to:
1. Understand results of screening
2. Recognize his/her risk of developing CVD events
3. Lifestyle modification

Further Assessment

Follow up
Referral

Monitoring & Evaluation
1. Coverage of the target population
2. Percentage of newly detected CVD high risk people
3. Timely submission of accurate, complete relevant returns and reports
4. No. of supervisory visits by MO-NCD etc.
Figure 7. 1 Referral pathways for screening, diagnosis and management of NCDs. Outline of screening programme.

GAPS IN EVIDENCE

- A model to risk stratify the Sri Lankan population needs to be developed.
- Prospective studies are required to determine the incremental value of reclassifying total CV risk and also to define eligibility for lipid lowering in consideration of CAC score at moderate or high risk.
- Outcome-based comparison of CAC scores vs. assessment of arterial plaque burden by ultrasonography for CV risk reclassification in those with moderate or high risk are needed.
- TC is used for WHO/ISH system and treatment goals for statins. However, LDL-C is the primary lipid analysis for screening, diagnosis and management.
- The maximum dose of statin to be used in Sri Lankan population need to be studied.
- Absence of outcome-based comparison of LDL-C in comparison to ApoB as primary measurement methods.
- Clinical impact therapy on altering the function of HDL is unknown in the background where raising HDL does not show effects on CVD events.
- Studies using outcomes with Lp(a) lowering therapies are needed.

KEY MESSAGES

- Emphasize a heart-healthy lifestyle across the life course for all individuals.
- Treatment of dyslipidaemia is guided by total cardiovascular risk.
- Statins are the drugs of choice to reduce cardiovascular disease risk in any type of dyslipidaemia.
- Dyslipidaemia treatment targets are based on control of low-density lipoprotein cholesterol (LDL-C).
- In patients with clinical atherosclerotic cardiovascular disease (ASCVD), reduce low-density lipoprotein cholesterol (LDL-C) with high intensity or maximally tolerated statin therapy.
- Do not stop or reduce statin dosage after achieving the lipid targets.
- Assess lipid measurements 4 to 12 weeks after statin initiation or dose adjustment. Repeat lipid measurements every 3 to 12 months based on individual risk.
REFERENCES

CHIANG, J. 2014. Liver Physiology: Metabolism and Detoxification.

MEDICAL STATISTICS UNIT MINISTRY OF HEALTH, N. A. I. M. 2017. Annual Health Statistics

10. ANNEXURES

Annexure 1

WHO/ISH (SEAR B) risk charts

<table>
<thead>
<tr>
<th>Age Group</th>
<th>People without Diabetes</th>
<th>People with Diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-74</td>
<td>40-105</td>
<td>35-105</td>
</tr>
<tr>
<td>65-69</td>
<td>40-100</td>
<td>35-100</td>
</tr>
<tr>
<td>60-64</td>
<td>40-95</td>
<td>35-95</td>
</tr>
<tr>
<td>55-59</td>
<td>40-90</td>
<td>35-90</td>
</tr>
<tr>
<td>50-54</td>
<td>40-85</td>
<td>35-85</td>
</tr>
<tr>
<td>45-49</td>
<td>40-80</td>
<td>35-80</td>
</tr>
<tr>
<td>40-44</td>
<td>40-75</td>
<td>35-75</td>
</tr>
</tbody>
</table>

Total cholesterol (mmol/L)

Cardiovascular disease risk laboratory-based charts

Southeast Asia

Indonesia, Cambodia, Laos PDR, Sri Lanka, Maldives, Myanmar, Malaysia, Philippines, Thailand, Timor Leste, Viet Nam, Mauritius, Seychelles.
WHO cardiovascular disease risk non-laboratory-based charts

Southeast Asia

Indonesia, Cambodia, Lao PDR, Sri Lanka, Maldives, Myanmar, Malaysia, Philippines, Thailand, Timor-Leste, Viet Nam, Mauritius, Seychelles.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Non-smoker</th>
<th>Smoker</th>
<th>Non-smoker</th>
<th>Smoker</th>
<th>SBP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-74</td>
<td>30</td>
<td>36</td>
<td>38</td>
<td>44</td>
<td><180</td>
</tr>
<tr>
<td>65-69</td>
<td>35</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td><180</td>
</tr>
<tr>
<td>60-64</td>
<td>35</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td><180</td>
</tr>
<tr>
<td>55-59</td>
<td>35</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td><180</td>
</tr>
<tr>
<td>50-54</td>
<td>35</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td><180</td>
</tr>
<tr>
<td>45-49</td>
<td>35</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td><180</td>
</tr>
<tr>
<td>40-44</td>
<td>35</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td><180</td>
</tr>
</tbody>
</table>

Risk Level:
- <5%
- 5% to <10%
- 10% to <20%
- 20% to <30%
- ≥30%

Body mass index (kg/m²)
- **Estimate the 10 year cardiovascular risk as follows using laboratory based charts:**
 Step 1 – Select the appropriate chart depending on the presence or absence of diabetes
 Step 2 – Select male or female tables
 Step 3 – Select smoker or non-smoker boxes
 Step 4 – Select age group box (if age is 54; select 50-54, if age is 55; select 55-59)
 Step 5 – Within this box find the nearest cell where the individual’s systolic blood pressure (mmHg) and the total blood cholesterol level (mmol/l) cross. The colour and the number of this cell determines the 10 year cardiovascular risk.

- **Estimate the 10 year cardiovascular risk as follows using non laboratory based charts:**
 Step 1 – Select male or female tables
 Step 2 – Select smoker or non-smoker boxes
 Step 3 – Select age group box
 Step 4 – Within this box find the nearest cell where the individual’s systolic blood pressure (mmHg) and the Body Mass Index (kg/m²) value cross. The colour and the number of this cell determines the 10 year cardiovascular risk.

![Emojis representing risk levels](image)

- < 5%
- 5% - < 10%
- 10% - < 20%
- 20% - < 30%
- ≥ 30%
Annexure 2

Physical activity

| How to measure the intensity of an activity | The easiest method of subjective assessment of the intensity of an activity is by the **talk test**. It is important to explain the patient on how to measure the intensity of an activity utilizing the talk test.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If he/she is able to talk and sing while doing a certain activity, that indicates that the particular activity is of light intensity.</td>
<td></td>
</tr>
<tr>
<td>2. If he/she is able to talk but, finds it difficult to sing while doing a certain activity, that indicates that the activity is of moderate intensity.</td>
<td></td>
</tr>
<tr>
<td>3. If he/she finds difficulty in talking while doing a certain activity, it indicates that the activity is of vigorous intensity.</td>
<td></td>
</tr>
<tr>
<td>Vigorous-intensity activity</td>
<td>Examples include jogging, running, carrying heavy groceries or other loads upstairs, or participating in a strenuous fitness class</td>
</tr>
<tr>
<td>Major muscle groups</td>
<td>Major muscle groups include the legs, back, abdomen, chest, shoulders and arms</td>
</tr>
<tr>
<td>Muscle-strengthening activity</td>
<td>Physical activity and exercise that increase skeletal muscle strength, power, endurance, and mass (e.g., strength training, resistance training, or muscular strength and endurance exercises).</td>
</tr>
</tbody>
</table>
Annexure 3
Dietary recommendations to lower low-density lipoprotein cholesterol

<table>
<thead>
<tr>
<th></th>
<th>To be preferred</th>
<th>To be used with moderation</th>
<th>To be chosen occasionally in Limited amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>Unpolished rice, Wholegrain wheat,</td>
<td>Refined bread, rice and pasta, biscuits, corn flakes</td>
<td>Pastries, muffins, pies, croissants</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Raw and cooked vegetables</td>
<td>Potatoes</td>
<td>Vegetables prepared in butter or margarine</td>
</tr>
<tr>
<td>Legumes</td>
<td>Dhal, cowpea, green gram, chickpeas, soybean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit</td>
<td>Fresh or frozen fruit</td>
<td>Dried fruit, jelly, jam, canned fruit, sorbets, popsicles, fruit juice</td>
<td>Cakes, ice creams, fructose, soft drinks</td>
</tr>
<tr>
<td>Sweets and sweeteners</td>
<td>Non-caloric sweeteners</td>
<td>Sucrose, honey, chocolate, candies</td>
<td></td>
</tr>
<tr>
<td>Meat and fish</td>
<td>Lean and oily fish, poultry without skin</td>
<td>Lean cuts of beef, lamb, pork or seafood, shellfish</td>
<td>Sausages, salami, bacon, spare ribs, hot dogs, organ meats</td>
</tr>
<tr>
<td>Dairy food and eggs</td>
<td>Non-fat milk and yogurt</td>
<td>Low fat milk, low fat cheese and other milk products, eggs</td>
<td>Regular cheese, curd, whole milk and yogurt</td>
</tr>
<tr>
<td>Cooking fat and dressings</td>
<td>Vinegar, mustard, fat-free dressings</td>
<td>Olive oil, coconut oil, soft margarines, salad dressing, mayonnaise, ketchup</td>
<td>Trans fats and hard margarines (better to avoid them), palm and other vegetable oils, butter, lard, bacon fat</td>
</tr>
<tr>
<td>Nuts/seeds</td>
<td>All, unsalted (except coconut)</td>
<td>Coconut scrapings</td>
<td>Nuts/seeds</td>
</tr>
<tr>
<td>Cooking procedures</td>
<td>Grilling, boiling, steaming</td>
<td>Stir-frying, roasting</td>
<td>Frying</td>
</tr>
</tbody>
</table>
Annexure 4
Cardio protective diet for high risk or with ASCVD

1. Total carbohydrate intake is 50/60% of total energy intake and not less than 40% of total energy intake,
2. Total protein intake is 15-20% of total energy intake
3. Total fat intake is 30% or less of total energy intake
4. Saturated fats are 7% or less of total energy intake
5. Intake of dietary cholesterol is less than 300mg/day
6. Increase their mono-unsaturated fat intake with olive oil, avocado, small fish
7. Choose wholegrain varieties of starchy food such as parboiled unpolished rice
8. Reduce their intake of sugar to less than 6 teaspoons and food products containing refined sugars including fructose
9. Eat at least 5 portions of fruit and vegetables per day, 1 portion is equivalent to 3 tablespoons of cooked vegetables
10. Eat at least 2 portions of fish per week, including a portion of oily fish such as herrings, 1 portion is equivalent 2 matchbox size piece.
11. Eat at least 4 to 5 portions of unsalted nuts, seeds and legumes per week, 1 portion is equivalent to 1 tablespoon.
Annexure 5

Recommendations for dietary supplements and functional foods

<table>
<thead>
<tr>
<th>Dietary supplements / functional foods</th>
<th>Action</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phytosterols</td>
<td>Plant sterols or stenos (rich in Green leafy vegetables) lower cholesterol.</td>
<td>Supplements are not recommended due to absent of conclusive evidence on Phytosterol help to prevent CVD</td>
</tr>
<tr>
<td>2. Red yeast rice</td>
<td>Red yeast rice is effective in lipid lowering</td>
<td>It is not recommended due to the variability in potency and possible adulteration of commercially available products</td>
</tr>
<tr>
<td>3. Dietary fibre</td>
<td>The consumption of certain types of soluble fibres slows gastric emptying, enhanced satiety, inhibition of hepatic cholesterol synthesis, and/or enhanced faecal excretion of cholesterol and bile salts, including psyllium, pectin (Banana, Guava, Belie fruit, passion fruit, grapefruit, apple, oranges etc.), certain pulses (e.g., Cowpea, Green gram, Chickpea etc.), dhal, nuts (Cotton, almond, walnut etc.) can produce a reduction in both total cholesterol and LDL cholesterol. The gel-forming attributes of soluble fibre may be the basis for improved lipid profiles and glucose homeostasis. The molecular weight and amount of beta-glucan in food products such as oats and oats products may contribute to LDL cholesterol lowering.</td>
<td>Fibre is effective whether added to the diet as a supplement or used as a component of a dietary modification plan.</td>
</tr>
<tr>
<td>4. Soy and soy products (Soya)</td>
<td>Contains isoflavones, which are phytoestrogens. Isoflavones have some</td>
<td></td>
</tr>
</tbody>
</table>
meat, Tofu, Tempeh etc.) properties similar to oestrogen and may have a small effect on cholesterol levels and inhibition on LDL oxidation. The efficacy of soy on improving serum lipids is modest; it may produce a meaningful reduction on total cholesterol and LDL cholesterol when combined in the diet with other cholesterol-lowering foods.

5. Isoflavone Isoflavone supplements do not appear to be of benefit and should not be taken with a goal of improving lipids and cardiovascular risk Not recommended

6. Berbine Although the berberine supplements (between 900 to 1500 mg/day) improved total cholesterol, LDL cholesterol, and triglycerides, considering alkolid content and few available studies, not recommended

7. Policosanol no improvement in any measurement of serum lipids not recommended

8. n-3 unsaturated FA It raises HDL and lower LDL. No evidence that omega-3 FA supplements help to prevent ASCVD Recommend consuming 90-180 g of fish (Hurulla, Sprates, Tuna, Kumbalawa etc.) per week. omega-3 FA supplements not recommended

9. Garlic, Resveratrol No evidence not recommended

10. Selenium and calcium No beneficial effect on serum lipid not recommended
Annexure 6

General advice

- Eat a variety of nutritious foods from all the food groups, in appropriate amounts as given above to maintain optimal body weight and to get all the nutrients.
- Encourage to choose fibre rich whole grains / less polished grains for most of the grain servings.
- Main aim is to change the fat composition by increasing healthy fats in the diet. Therefore;
 - Encourage to include the fish containing omega 3 fatty acids such as Sardines, Salaya, Hurulla, Kumbalawa, Salmon, Mackerel and Tuna
 - Restrict foods containing saturated fat such as red-meat, cheese and full fat dairy.
 - Include foods containing unsaturated fats such as fish, nuts, seeds, avocado and olive oil.
- Use healthy cooking methods
 - Prepare more fresh salads with vegetables to minimize the loss of nutrients and reduce the amount of coconut milk used for cooking
 - Use alternative cooking methods such as steaming, mirisata, ambulata etc.
 - Restrict deep frying / heating oil to very high temperatures
 - Minimize deep frying of foods. If deep frying is needed, can use other options such as use of air frying
- Avoid re-using oil.
Annexure 7
Daily recommendation for heart healthy diet for a person with sedentary life style

<table>
<thead>
<tr>
<th>Food group</th>
<th>Number of servings per day</th>
<th>1 serving size</th>
<th>1 serving size equal to:</th>
</tr>
</thead>
</table>
| Cereal / Yam/ Starchy food | 6 | ½ cup | ½ cup rice
1 ½ cup of cooked noodles
1 slice of bread
2 - 3 string hoppers
1 hopper
½ rotti (about 10cm diameter and 0.5cm thick)
1 dosai (about 10cm in diameter)
3 cm height pittu
½ cup of boiled sweet potato/ Manioc/ Raja ala/ other yams
½ cup jack/ bread fruit
½ cup of boiled corn |
| Pulses | 3 | 1/2 cup / 3 tbs | 3 tbs dhal
3 tbs kadala parippu
3 tbs mung parippu
½ cup chickpeas
½ cup cowpea
½ cup green gram
2 tbs soya meat |
| Fish / Poultry /meat / Egg | 2 | 30 g (Size of Two match boxes) | 2 match box size fish
2 match box size chicken
1 match box size dry fish
10 - 20 sprats
1 egg |
| Milk | 1 | 1/2 cup | 1/2 cup non-fat fresh milk
Full 1 tbs non-fat milk powder |
| Nuts and seeds | 1 | 1 full tbs | 1 full tbs Peanut
5 full Cashew
1 full tbs pumpkin / sun flower seeds
1 Thala guli
10 Kottang |
<p>| Root vegetables | 1 | 3 tbs | 3 tbs Ash plantain / Pumpkin/ Bread fruit/ Jack fruit/ Potato/ Sweet potato/ Manioc/ other yams/ Carrot/ Beet/ Radish/ Knol khol/ Kohila/ Lotus roots |
| Green Vegetables | 1 ½ | 3 tbs | 3 tbs Beans/ Murunga/ Wetakolu/ Pathola/ Dambala/ Bitter gourd(Karavila)/ Thibbatu / Elabatu/ Lunu mal/ |</p>
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
<th>Measurement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leafy vegetables</td>
<td>3</td>
<td>3 tbs</td>
<td>3 tbs Gotukola/ Kathurumurunga/ Mukunuwenna/ Spinach/ Kungkun/ Anguna/ Thembu/ Sarana/ Thampala/ Murunga leaves/ Pumpkin leaves/ Carrot leaves/ Beet leaves/ Radish leaves/ Knol khol leaves/ Cabbage leaves/ Passion leaves/ Manioc leaves/ Tender kohila leaves/ Onion leaves</td>
</tr>
<tr>
<td>Other vegetables</td>
<td>1</td>
<td>3 tbs</td>
<td>3 tbs Brinjal/ Cucumber/ Capsicum/ Tomato/ Keselmuwa/ Cauliflower/ Ambaralla/ Green mangoes</td>
</tr>
<tr>
<td>Fruits</td>
<td>2</td>
<td>1 small (100g) or ½ cup of fresh cut fruit or canned fruit</td>
<td>½ small Jambola (grapefruit) ½ cup fresh Pineapple 5 large / 10 small Grapes 1 cup cubed Water melon 5-6 jack fruit 1 medium Wood apple 1 small Belli fruit 2 medium Ambarella 10 – 15 Jambu 7-9 Rambuttan ½ cup Anoda 2 pieces of Durian 2 medium Passion fruits 10 fruits of Nelli / Lovi / Veralu 2 small Mandarin 1 small Orange (6 cm across) 1 small Apple (5 cm across) 5 Strawberries ½ cup Mulberry ½ medium Avocado</td>
</tr>
<tr>
<td>Coconut</td>
<td>½</td>
<td>2 tbs Grated coconut or ½ cup Coconut milk</td>
<td>½ cup of coconut milk 2 tbs coconut 3 tbs gravy</td>
</tr>
<tr>
<td>Oil*</td>
<td>1</td>
<td>1 tbs (15 ml)</td>
<td>1 tbs Coconut oil/ Olive oil/ sesame oil/ Soya oil/ Sun flower oil/ Rice bran oil</td>
</tr>
<tr>
<td>Sugar</td>
<td>3</td>
<td>1 tsp</td>
<td>1 tsp Honey</td>
</tr>
<tr>
<td>Ingredient</td>
<td>Amount</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>1</td>
<td>1 level tsp</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>6 – 8</td>
<td>1 cup</td>
<td></td>
</tr>
<tr>
<td>Other Beverages</td>
<td>2 -3</td>
<td>1 cup</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 cup Light plain tea/ Coffee/ Herbal drinks (Belimal, Ranawara) /Coriander water/ king coconut / Coconut water</td>
<td></td>
</tr>
</tbody>
</table>

1 cup – 200 ml cup, tbs = table spoon, tsp = tea spoon

All given food are edible portions, otherwise specified

When choosing oil, take only 5 ml from coconut oil and use 10 ml from other oil to improve the fat composition
Annexure 8 Features of Different Medications Used in the Treatment of Dyslipidaemia

<table>
<thead>
<tr>
<th>Different drugs</th>
<th>LDL-C reduction</th>
<th>Triglyceride reduction</th>
<th>HDL-C increase</th>
<th>ADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>dose-dependent and varies between the different statins</td>
<td>10-20%</td>
<td>1-10% increase</td>
<td>Mentioned above in 6.2.4</td>
</tr>
<tr>
<td>MOA - inhibit HMG-CoA reductase enzyme, the rate-limiting step in cholesterol biosynthesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o low intensity statins - 20-30% reduction is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o medium intensity statins - 31-40% reduction is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o high intensity statin - >40% is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>15-22%</td>
<td>8%</td>
<td>3%</td>
<td>Rare</td>
</tr>
<tr>
<td>MOA - inhibit the absorption of cholesterol by the small intestine</td>
<td></td>
<td></td>
<td></td>
<td>(No need of dose reduction in mild hepatic impairment and mild to severe renal impairment)</td>
</tr>
<tr>
<td>Drug Class</td>
<td>MOA</td>
<td>Efficacy</td>
<td>Side Effects</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bile acid sequestrants</td>
<td>MOA - remove a large portion of the bile acids from the enterohepatic circulation.</td>
<td>18-25</td>
<td>May increase TG, flattened, constipation, dyspepsia, and nausea.</td>
<td></td>
</tr>
<tr>
<td>E.g., Cholestyramine, colesevelam</td>
<td></td>
<td>-</td>
<td>Gastrointestinal (GI) adverse effects (most commonly flatulence, constipation, dyspepsia, and nausea).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced absorption of fat-soluble vitamins.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drug interactions with several commonly prescribed drugs.</td>
<td></td>
</tr>
<tr>
<td>PCSK9 inhibitors</td>
<td>MOA – increase expression of LDL receptors at cell surfaces</td>
<td>60</td>
<td>26 two, 9 itching at the site of injection and flu-like symptoms, increase of patient-reported neurocognitive effects, hypersensitivity.</td>
<td></td>
</tr>
<tr>
<td>E.g. Alirocumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrates</td>
<td>MOA - Fibrates are agonists of peroxisome proliferator-activated receptor α (PPAR-α), acting on, various steps in lipid and lipoprotein metabolism.</td>
<td>20%</td>
<td>50% myopathy, liver enzyme elevations, and cholelithiasis.</td>
<td></td>
</tr>
<tr>
<td>Omega-3 fatty acids</td>
<td>MOA – Has no overall effect of omega-3 PUFAs on total mortality</td>
<td>-</td>
<td>45% GI disturbance, increase bleeding with the antithrombotic effects.</td>
<td></td>
</tr>
<tr>
<td>Eicosapentaenoic acid (Lloyd-Jones et al.) and docosahexaenoic acid (DHA)</td>
<td></td>
<td>-</td>
<td>Risk of prostate cancer.</td>
<td></td>
</tr>
</tbody>
</table>
Proprotein convertase subtilizing/kexin type 9 inhibitors (PCSK9 inhibitors) e.g.: alirocumab evolocumab

Inhibit PCSK9 protein and thereby increase LDLR expression.

<table>
<thead>
<tr>
<th></th>
<th>46-73%</th>
<th>26%</th>
<th>4</th>
</tr>
</thead>
</table>

- Limited data on long-term safety
- Possible new onset diabetes mellitus and patient-reported neurocognitive effects has been described